PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail1
نویسندگان
چکیده
Esophageal cancer is among the most deadly malignant diseases. However, the genetic factors contributing to its occurrence are poorly understood. Multiple studies with large clinic-based cohorts revealed that variations of the phospholipase C epsilon (PLCE1) gene were associated with esophageal cancer susceptibility. However, the causative role of PLCE1 in esophageal cancer is not clear. We inactivated the functional alleles of PLCE1 by CRISPR/Cas9 genome editing technology. The resultant PLCE1 inactivated cells were analyzed both in vitro and in vivo. Our results showed that loss of PLCE1 dramatically decreased the invasion and proliferation capacity of esophageal carcinoma cells in vitro. Moreover, such PLCE1 inactivated tumor grafts exhibited significantly decreased tumor size in mice. We found that PLCE1 was required to maintain protein level of snail a key transcription factor responsible for invasion. Our further transcriptomic data revealed that deficient cells were significantly decreased in expression of genes enriched as targets of Snail. Strikingly, recovery of Snail protein at least partially rescued the invasion and proliferation capacity in PLCE1 inactivated cells. In ESCC clinical specimens, PLCE1 was correlated with tumor stage (P<.0001). Interestingly, PLCE1 expression was positively correlated Snail by immunohistochemistry in such specimens (P<.0001). Therefore, our functional experiments showed the essential roles of PLCE1 in esophageal carcinoma cells and provided evidences that targeting PLCE1 and its downstream molecules could be effective therapies for esophageal cancer.
منابع مشابه
MicroRNA-34a functions as a tumor suppressor by directly targeting oncogenic PLCE1 in Kazakh esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is one of the frequent malignant tumors with poor prognosis worldwide. Identifying the prognostic biomarkers and potential mechanisms of such tumors has attracted increasing interest in esophageal cancer biology. Our previous study showed that phospholipase C elipson 1 (PLCE1) expression is up-regulated and associated with disease progression in esophag...
متن کاملClinical significance of the correlation between PLCE 1 and PRKCA in esophageal inflammation and esophageal carcinoma
Esophagitis and Barrett's esophagus are linked to esophageal squamous cell carcinoma and adenocarcinoma, respectively. However, the underlying mechanisms are still unclear. This study analyzed the expression levels of and correlation between PLCE1 and PRKCA in human esophagitis, carcinogen NMBA-induced rat esophagus, PLCE1 genetic deficient mouse esophageal epithelial tissues and human esophage...
متن کاملTyrosine Phosphorylation of p68 RNA Helicase Promotes Metastasis in Colon Cancer Progression
The initiation of cancer metastasis usually requires Epithelial-Mesenchymal Transition (EMT), by which tumor cells lose cell-cell interactions and gain the ability of migration and invasion. Previous study demonstrated that p68 RNA helicase, a prototypical member of the DEAD-box RNA helicases, functions as a mediator to promote platelet-derived growth factor (PDGF)induced EMT through facilitati...
متن کاملA p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition
Snail1 is a zinc finger transcriptional repressor whose pathological expression has been linked to cancer cell epithelial-mesenchymal transition (EMT) programs and the induction of tissue-invasive activity, but pro-oncogenic events capable of regulating Snail1 activity remain largely uncharacterized. Herein, we demonstrate that p53 loss-of-function or mutation promotes cancer cell EMT by de-rep...
متن کاملTGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1
High levels of transforming growth factor-β (TGFβ) correlate with poor prognosis for patients with prostate cancer and other cancers. TGFβ is a multifunctional cytokine and crucial regulator of cell fate, such as epithelial to mesenchymal transition (EMT), which is implicated in cancer invasion and progression. TGFβ conveys its signals upon binding to type I and type II serine/threonine kinase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2017